

 510 Int. J. Intelligent Information and Database Systems, Vol. 5, No. 5, 2011

 Copyright © 2011 Inderscience Enterprises Ltd.

Concurrent execution of transactions in a
peer-to-peer database network

Mehedi Masud* and Sultan Aljahdali
Department of Computer Science,
College of Computers and Information Technology,
Taif University,
P.O. Box 888, Zip Code 21974, Taif, Saudi Arabia
E-mail: mmasud@scientist.com
E-mail: aljahdali@tu.edu.sa
*Corresponding author

Abstract: Transaction execution in a peer-to-peer database network specifies
an update made to a peer’s instance is applied to the peer’s local database and
propagated to related peers. Maintaining a successful execution of a transaction
in such a network is challenging due to the dynamic behaviour of peers and
unstructured topologies of networks. In this paper, we present a decentralised
transaction execution process that guarantees the correct execution of a
transaction without relying on any global coordinator. In the network, a peer
executes a transaction and provides the local execution information to the
initiator of the transaction. The initiator of a transaction plays important roles
for the successful execution and termination of a transaction. Transactions
originated from different peers may involve in a conflict during their execution
in the network. In this paper, we also show a process to resolve conflicts using
a universal leader election algorithm, called Mega-Merger.

Keywords: database; transaction processing; peer-to-peer networks; intelligent
information; concurrency.

Reference to this paper should be made as follows: Masud, M. and
Aljahdali, S. (2011) ‘Concurrent execution of transactions in a peer-to-peer
database network’, Int. J. Intelligent Information and Database Systems,
Vol. 5, No. 5, pp.510–531.

Biographical notes: Mehedi Masud received his PhD in Computer Science
from the University of Ottawa, Canada. He is an Assistant Professor at the
Department of Computer Science, Taif University, KSA. His research interests
include issues related to P2P and networked data management, query
processing and optimisation, and information security. He has published
several research papers at international journals and conferences.

Sultan Aljahdali received his BS from Winona State University, Winona,
Minnesota in 1992, his MS with honour from Minnesota State University,
Mankato, Minnesota in 1996, and his PhD in Information Technology from the
Volgenau School of Information Technology and Engineering at George
Mason University, Virginia, USA. He is the Dean of the College of Computers
and Information Systems at Taif University. His research interest includes
software testing, developing software reliability models, and soft computing for
software engineering.

 Concurrent execution of transactions in a peer-to-peer database network 511

1 Introduction

In the last few years, steady progress has been made in research on various issues related
to peer data management systems, such as data integration models (Halevy et al., 2003),
mediation methods (Halevy et al., 2004), coordination mechanisms (Serafini et al., 2003;
Rodriguez-Gianolli et al., 2005), and data-level mappings (Kementsietsidis et al., 2003)
among the peer databases. These systems combine both P2P and database management
system functionalities. The local databases on peers are called peer databases. Each peer
chooses its own database schema and maintains data independently. Contrary to the
traditional data integration systems where a global mediated schema is required for data
exchange, in peer data management systems semantic relationships exist between two
peers, or among a small set of peers for sharing data. The data is accessed globally from
any peer by traversing the network of peers.

There is an increasing interest in the creation of peer data management systems,
which includes establishing and maintaining mappings between peers and processing
queries using appropriate propagation techniques. While there is a rich body of research
concerning frameworks and mapping issues among peers, dynamic aspects of data in
such systems have received much less attention. For example, in many data sharing
efforts, particularly in biological and health sciences, data in sources are continuously
corrected and cleaned by the users of the local sources. In this case, the exchange of
updates among sources is equally important in order to keep the peers updated with the
cleaned data. In such an update exchange, a question of significant interest is how to
define consistency during the exchange and processing of updates, while still allowing
autonomy among the peers. Surprisingly, little work has addressed update exchange
mechanisms for peer data management systems.

Peers in a peer-to-peer database network are autonomous and there is no global
control of the execution of transactions. Therefore, during propagation of transactions,
different conflicting situations with respect to transactions may occur which lead to data
inconsistency in the network. Hence, a conflict resolution protocol is required to select
the candidate transaction from the conflicting transactions.

In this paper, we consider this problem of consistent execution of transactions and
propose a decentralised mechanism for resolving conflicts. In this approach, conflicts are
resolved in a decentralised collaborative fashion by exchanging some status information
of the transactions between the initiator and participants. In the process, a peer that
executes a given transaction is called a participating peer or simply a participant. The
status information provided by a participant to initiators includes the local execution
status of the transaction, the local conflict information, and the transactions spawned by
the participant. Essentially, each participant exchanges information with the transaction’s
initiator during the execution of a transaction. The initiator plays an important role for the
correct execution, conflict resolution, and termination of transactions. Initiators of the
conflicting transactions select a candidate transaction and the candidate transaction is
finally executed in the network. A candidate transaction is selected using a universal
leader election protocol, called Mega-Merger (Santoro, 2006). The Mega-Merger
protocol is selected since it runs in every network, requires no a priori knowledge of the
topology of the network nor its properties.

The paper is organised as follows: Section 2 presents the system model of a
peer-to-peer database network and describes the properties of a global transaction.
Section 3 describes the execution protocol of a global transaction and Section 4 presents

 512 M. Masud and S. Aljahdali

the process of selecting a candidate transaction from the conflicting transactions.
Section 5 presents results we achieved from experiments and Section 6 reviews related
work. Finally, Section 7 concludes.

2 System model

We assume a peer-to-peer database network with a set of peers P = {P1,P2,…,Pn} where
each peer Pi has a pre-existing database DBi. Each peer has full control over its local
database (e.g., modify schema, update data in the database). Each peer also establishes
mappings with other peers in the network in order to share data. Mappings specify data
sharing constraints between peers.

In P2P, there are two types of mappings, schema-level (Halevy et al., 2004) and
data-level (Kementsietsidis et al., 2003). A schema-level mapping is a logical assertion of
the form:

, ((,) (,))x y x y z x zφ∀ → ∃ Ψ

where the left hand side (LHS) of the implication, φ, is a conjunction of atoms over
variables and ,x y and the right hand side (RHS) of the implication, Ψ, is a conjunction
of atoms over variables and .x z The mapping expresses a constraint about the existence
of a tuple in the instance on the RHS, given a particular combination of tuples satisfying
the constraint of the LHS. Data-level mappings can be established using mapping tables
(Kementsietsidis et al., 2003). A mapping table is a relation over the attributes X,Y, where
X ⊆ Ui and Y ⊆ Uj are non-empty sets of attributes from two peers Pi and Pj. A tuple
(a, b) in a mapping table indicates that the value a ∈ dom(X) is associated with the value
b ∈ dom(Y). Mapping tables are generally used when there is data level heterogeneity
between peers. Mappings in mapping tables also store data sharing constraints between
two peers corresponding to the associations in mapping tables. Without loss of generality,
we assume that mappings are in placed by the administrator of each peer using common
agreements when they want to share data. The construction of mappings mij forms an
acquaintance (i, j) between Pi and Pj. Here, Pj and Pi are acquaintees of each other.

2.1 Transaction model

A transaction consists of a sequence of read-and-write (update) operations on data items.
A transaction is classified as a read-only transaction or an update transaction. A
read-only transaction consists of only read operations that executes in the network
without involving in the proposed conflict resolution protocol. This allows a read-only
transaction to terminate its execution without being blocked. On the other hand, an
update transaction consists of a sequence of write operations that is executed in the
network may involve in the proposed conflict resolution protocol.

In a peer-to-peer database network, when a user submits a transaction Ti to a peer Pi,
the transaction is executed at Pi and appropriate actions are performed in its local
database DBi. Peer Pi is called the initiator of Ti. For maintaining data consistency
between peers, whenever changes occurs in data at Pi by Ti, the data in each acquaintee Pj
of Pi need to be changed. However, this is subject to the satisfaction of the mapping Σij
between Pi and Pj. If the data accessed by Ti satisfies the mapping Σij then Pi forwards Ti

 Concurrent execution of transactions in a peer-to-peer database network 513

to its acquaintees. Before forwarding Ti, Pi transforms Ti wrt the schema of its
acquaintees. The transformation of Ti for an acquaintee Pj is denoted by .j

iT When Pj

receives Ti in transformed form ,j
iT Pj also executes Ti and forwards Ti to its

acquaintees. This is a recursive process. Base cases of the recursion are peers those have
no acquaintees to forward the transaction, i.e., the peers have no mappings with any other
peer. We call these peers terminate peers. Therefore, a transaction is propagated from the
initiator to all related peers until the transaction propagation ends at terminate peers.
Hence, from an initial transaction, a set of transactions is generated dynamically in the
network. The initial transaction is called a global transaction since the transaction is
executed in the network. The set of transactions generated from the global transaction are
called remote transactions. The semantics of global and local transactions is discussed in
(Masud and Kiringa, 2007).

We now describe the logical structure of a global transaction generated from a
transaction Ti originated at Pi. When Pi produces a set of remote transactions from Ti for
the execution in its immediate acquaintees, Ti can be viewed as a two-level global
transaction. In this case, Ti becomes the root. Ti becomes a multi-level global transaction
when the acquaintees of Pi also generate remote transactions for their respective
acquaintees. Consequently, a global transaction may have multiple layers depending on
the number of hops it propagates. Intuitively, as remote transactions are generated in the
system acquaintance-by-acquaintance, a transaction dependency graph is induced. The
nodes in this graph represent remote transactions and there is an edge from a transaction

j
iT to a transaction ,k

iT if k
iT has resulted from the propagation of j

iT by Pj to Pk.
When a peer receives a transaction, the transaction is either executed (if the transaction
does not involve in a conflict with any other transaction originated by another peer) or is
blocked or halted (if conflict occurs). If a transaction is blocked then it participates in the
election process to become a candidate. When the transaction becomes a candidate, the
execution of the transaction continues. If the transaction fails to become a candidate, it is
compensated and no further execution of the transaction occurs. The more details is
provided in Section 4. Note that cycles can exist in the network topology. Therefore, a
peer can receive the same transaction from multiple paths from a peer that originated the
transaction. We assume that when a peer receives the same transaction it just discards the
transaction that is later received.

The execution of a transaction in a peer-to-peer database network is different from
other extended transaction models, such as nested transactions (Moss, 1985), sagas
(Garcia-Molina and Salem, 1987), etc. The difference is that the set of component
transactions to be invoked in a peer-to-peer database is not known in advance. The
component transactions are generated dynamically based on mappings between peers. In
this respect, transactions in a peer-to-peer database network are closest to the
transactional model for long running activities proposed in Dayal et al. (1991). Moreover,
each of the transaction generated from the initial transaction is an atomic transaction
resulted from the direct or indirect propagation in the network. Each transaction accesses
data items only at the local peer. Unlike a transaction in a multi-database system
(Breitbart and Silberschatz, 1988; Breitbart et al., 1992), a transaction is not decomposed
into sub-transactions to access data at different peers.

There is also a difference between a distributed transaction model and P2P transaction
model. In a distributed transaction model global level transactions are issued to the global

 514 M. Masud and S. Aljahdali

transaction manager (GTM), and are decomposed into a set of sub-transactions to be
individually submitted to the corresponding LDBSs. However, in our P2P transaction
model, a global transaction is not decomposed but rather is propagated as an entire
transaction. A peer, after executing a transaction locally, forwards the entire transaction
(not the individual read-and-write operations that constitute the transaction) to its
acquaintances. The remote peer that receives the transaction considers the transaction as
submitted by local users. In a distributed transaction model, transactions are executed
under the control of the GTM. In contrast, a P2P transaction model is built on a network
of peers without a GTM or controller. However, we assume that each local database
management system preserves the atomicity, consistency, isolation, and durability
(ACID) properties (Bernstein et al., 1987) of transactions and ensures serialisability of
the local schedule using the local concurrency protocol since the LDBSs are pre-existing.
In a traditional distributed database system, serialisability is ensured using the distributed
two-phase (2PL) protocol (Bernstein et al., 1987) and atomicity of transactions is ensured
using the two-phase commit (2PC) protocol (Bernstein et al., 1987). However, in a P2P
transaction model, application of these protocols is not feasible or applicable.

2.2 Transaction execution life cycle

A transaction may have different execution status during its execution in a peer-to-peer
network depending on the execution level of the transaction. The levels are execution of a
transaction in a peer, in acquaintees, and in a network. We categorise the execution status
into three transaction state groups, namely, local, acquaintance-level, and global. The
local states show the execution status of a transaction in a peer, the acquaintance-level
states show the execution status of a transaction in the immediate acquaintees of a peer,
and the global states show the status of a transaction in the network. In the following we
describe the groups and the states. In Figure 1, we depict the states of a transaction during
its execution in a peer to peer network.

2.2.1 Local

Local states symbolise the different sates of a transaction during its local execution in a
peer. There are three different local states, namely, start, locally-aborted (LA), and
locally-committed (LC).

The start state symbolises the beginning of execution of a transaction in a peer. A
transaction can be LA or LC in a peer. If a transaction is successfully executed in a peer,
it is committed by the local transaction manager of the peer and the state of the
transaction changes from start to LC state. A change of state is denoted by an arrow in the
Figure 1. However, if the transaction is aborted due to the failure of execution, the state
becomes LA. Examples of a transaction abort are a transaction abort to timeout, or a
failure to pass the validation test by the transaction manager of a peer. The transaction
manager starts execution of a LA transaction after the recovery steps that are managed by
the recovery manager of the database management system in the peer. The details of the
recovery process can be found in Gray and Reuter (1993). If a peer finds the state of a
transaction in LC state, the peer forwards the transaction to its acquaintees and the state
of the transaction is changed from LC to acquaintance-level-to-be-committed state. Now,
the peer waits for the successful execution of the transaction in its acquaintees. The state
of a transaction can be changed from LC to compensate state as shown in the Figure 1 if

 Concurrent execution of transactions in a peer-to-peer database network 515

the transaction is involved in a conflict with another transaction before forwarding the
transaction to its acquaintees. In this case, the transaction is selected as a victim for
compensation and the state is changed from LC to compensate. In global state, we talk
about compensate state and in Section 4, we describe the situation when a transaction is
selected as a victim transaction.

Figure 1 States of a transaction

2.2.2 Acquaintance-level

There are two states in this group, namely, acquaintance-level-to-be-committed (ALC)
and acquaintance-level-committed (AC). These two states symbolise the execution status
of the forwarded transaction in the immediate acquaintees of a peer. The ALC state
symbolises that the forwarded transactions are to be committed at acquaintees and the AC
state symbolises that the forwarded transactions are successfully committed at the
acquaintees. If the acquaintees committed the transaction, the state of the transaction
changes to acquaintance-level-committed for that level of acquaintance from which the
transactions are forwarded. The state of a transaction can be changed from ALC to
compensate state if a forwarded transaction in an acquaintee involves in a conflict with
another transaction that the acquaintee received from another peer. The decision is made
by the conflict resolution protocol described in Section 4.

2.2.3 Global states

The global states symbolise the execution status of a transaction in a peer-to-peer
network. There are two states in this group, namely, terminate and compensate. The
terminate state of a transaction symbolises that the transaction is successfully committed
by the participating peers in the network. If a transaction is terminated, all the

 516 M. Masud and S. Aljahdali

information related to the execution of the transaction in the network is deleted from the
participating peers. The compensate state of a transaction symbolises that the transaction
has involved in a conflict with another transaction and the conflict resolution protocol in
Section 4 has decided to compensate the effect of the transaction in participating peers.
This compensation is done by invoking a compensate transaction in reverse order
(Schuldt et al., 2002). The compensate transaction semantically undoes the effect of the
execution of the transaction.

3 Transaction execution

In this section, we present a transaction execution protocol. The protocol relies on the
following observations:

• Conflict graph (CG): Each peer maintains conflict relationships among the active
transactions in the form of a CG that the peer executes. The transactions that are not
terminated in the network are called active transactions. A conflict relationship,
i.e., an edge between two transactions is created in the graph based on the notion of
potential conflict (Ganarski et al., 2007). According to the definition in Ganarski
et al. (2007), a potential conflict occurs between two transactions if they access at
least one data item in common and at least one of the transactions performs a write
operation on that data item. This potential conflict does not allow a read transaction
to continue its execution in a P2P network. In a P2P network, a read transaction
should continue its execution without being halted. This eliminates the abort of a
read transaction. Since queries are more frequent than updates in P2P networks,
allowing a read transaction to execute without involving in a conflict resolution
protocol is logical, though sometimes users will not get the consistent result. We say
a transaction Ti which is active in a peer Pi potentially conflicts with another
transaction Tj that is also active in the same peer, if both the transactions access at
least one data item in common and perform a write operation on that common data
item. This definition allows a read transaction to execute in the network without
being halted. Formally, we define a potential conflict as follows:

• Potential conflict: Let Ti and Tj be two transactions that are active in a peer. Let
WS(Ti) and WS(Tj) denote the set of data items on which Ti and Tj perform write
operations respectively. A potential conflict occurs between Ti and Tj if

() () 0.i kWS T WS T ≠ /∩

• Transaction dependency tree (TDT): Each global transaction initiator maintains a
dynamic data structure, called TDT, for each global transaction it originates until the
transaction is terminated in the network. TDT is used to keep the dependency
relationships among the remote transactions generated from a global transaction in
the network. The construction of a TDT for a global transaction is discussed below.

1 When a peer Pi initiates a transaction Ti and successfully executes Ti, the peer
creates a node for Ti in the TDT of Ti.

 Concurrent execution of transactions in a peer-to-peer database network 517

2 Peer Pi generates remote transactions for its acquaintees and forwards the
remote transactions. When remote transactions are forwarded, a list of new
remote transactions at the node Ti of TDT(Ti) is added plus edges are inserted
between Ti and the newly generated remote transactions.

3 When a peer receives a remote transaction, it executes the transaction locally
and generates remote transactions for its acquaintees.

4 After successfully executing the received transaction, a peer sends a vote
message to the initiator and waits for a forward message from the initiator in
order to forward the newly generated remote transactions. When a peer sends a
vote message, a peer also attaches a list of the newly generated remote
transactions from the received transaction plus the ids of new acquaintees where
the peer is ready to forward the new transactions.

5 When the initiator receives the vote message, it creates nodes for each of the
new transaction that are in the vote message and inserts edges between the
newly generated transactions and the remote transaction from which the
transactions are generated. Initiator now sends a forward message to the sender
of the vote message.

6 When a peer receives a forward message it forwards the remote transactions to
its acquaintees.

Note that when a peer forwards a transaction, it also forwards the id of the initiator
and the global id of the transaction. In this way, every peer knows which peer is the
initiator of the global transaction. Here, we do not show any conflicting scenario
during the construction of a TDT. In Section 4.2, we shall show how to deal with
conflicts between transactions generated from different peers. We now give an
example.

Figure 2 TDT construction, (a) peer to peer network (b) TDT for the transaction T1 initiated at P1

(a) (b)

Figure 2 shows the construction of a TDT corresponding to a transaction T1 that is
originated at P1. Figure 2a shows a peer-to-peer database network. Figure 2b depicts
the construction of the tree from T1. After P1 successfully executed T1, it creates a
node for T1 and it becomes the root of TDT for T1. After that P1 generates two
remote transactions T2 and T3 from T1 for acquaintees P2 and P3 and forwards the
transactions. Assume that a remote transaction for a peer Pj is denoted by Tj. P1 now
inserts an edge from T1 to each of the remote transaction T2 and T3 and add a list
[T2, T3] at T1 node. After receiving T2 from P1, P2 executed T2 successfully. P2 also
generated two new remote transactions T4 and T5 from T2. P2 now sends a vote

 518 M. Masud and S. Aljahdali

message to the initiator of T2 together with the list of transactions [T4, T5] that are
generated from T2 at P2. When P1 receives the vote message, it creates two new
nodes for T4 and T5 and inserts edges from T2 to T4 and from T2 to T5. P1 sends a
forward message to P2. Note that P2 is waiting for the decision from the initiator of
T2 in order to forward the transactions T4 and T5. Only after receiving the decision
from the initiator, P2 forwards the transactions T4 and T5 to P4 and P5, respectively.
P1 now waits for the execution decision of T4 and T5 from P4 and P5. Similarly, P3
does the same task. Note that according to the links in Figure 2a, P4 receives the
same global transaction from P2 and P3. We assume that P4 receives the transaction
from P2 earlier than P3. Hence, no edge is created from T3 to T4 since P4 rejects T4
from P3.

3.1 Transaction execution protocol

A transaction execution protocol starts when a peer receives a transaction from its clients.
As we mentioned earlier that an initiator maintains a dynamically generated TDT for a
global transaction it originates. Besides maintaining a tree, each initiator also maintains a
transaction status tree (TST) for monitoring the execution status of the component
transactions of a global transaction. Each node in a TST is labelled with a state that
represents the status of a remote transaction in a peer. When a remote transaction, e.g., Ti
is executed locally in a peer Pi, the corresponding node status is changed to LCi. When all
the remote transactions generated from Ti are executed successfully by all the relevant
acquaintees, then the status of Ti is changed to ACi. When the status of all the nodes is
acquaintance-level committed then the initiator sends a terminate message to all the
peers. After receiving the terminate message all the peers delete the stored information of
the transaction.

An example of a transaction execution protocol is depicted in Figure 3. In the figure,
left side shows a peer-to-peer database network where a transaction T1 is originated at
peer P1. In the following, the steps of the protocol are described.

• Step 1: T1 is executed at P1. Hence, a node LC1 is created in TST(T1) for T1 showing
that T1 is locally committed.

• Step 2: P1 has forwarded T2 and T3, the remote transactions generated from T1, for
peers P2 and P3. P1 marks T1 in TST(T1) to ALC1 and waits for the votes from P2 and
P3.

• Step 3: P1 receives votes from P2 and P3. The status of T1 is changed to AC1 since T1
has been executed successfully in P1’s acquaintees.

• Step 4: After receiving the vote message from P2, P1 knows that P2 has no
transaction to forward, therefore, an edge from AC1 → AC2 is inserted. It represents
that the component transaction T2 has been successfully committed at P2 and P2 has
not generated any new remote transaction. On the other hand, when P1 receives the
vote message from P3, P1 knows that P3 has generated new remote transactions T4
and T5 to be forwarded to P4 and P5. Therefore, an edge AC1 → ALC3 is inserted. It
represents that T3 is acquaintance-level-to-be-committed, that means P1 has to wait

 Concurrent execution of transactions in a peer-to-peer database network 519

for the execution decision from P4 and P5. P1 also sends a forward message to P3
allowing P3 to forward the newly generated transactions.

• Step 5: After receiving the forward message from P1, P3 forwards T4 and T5 to P4 and
P5 respectively. P1 receives vote message from P4 and P5 about the successful
execution of T4 and T5 generated from T3. Therefore, the status of T3 is changed from
ALC3 to AC3. It denotes that component transactions of T3 have been successfully
executed at the acquaintees of P3.

• Step 6: When P1 receives vote messages from P4 and P5, P1 knows that there is no
more component transactions generated from T4 and T5. Therefore, edges
AC3 → AC4 and AC3 → AC5 are inserted. The edges denote that no further
propagation has happened and all the remote transactions have been successfully
executed in the network.

• Step 7: When P1 notices that each node has the status AC, P1 sends a termination
message to all the participants of T1. All the peers then terminate (T) the execution of
T1 and do the garbage collection.

Figure 3 Transaction execution protocol

Figure 4 presents the protocol. From the protocol, we notice that the initiator maintains
two data structures for a transaction Ti: a TDT (TDT(Ti)) and a TST (TST(Ti)). When a
transaction Ti is originated at Pi, the transaction is first executed at Pi and Pi starts
building TDT(Ti) and TST(Ti). After the local execution of Ti, Pi finds the list of
acquaintees relevant to Ti using the function ACQ(Pi(Ti)). If there is no relevant peers for
Ti, the execution of Ti is terminated at Pi. If there are relevant acquaintees for Ti then Ti is
entered into the global execution phase. In the global execution phase, the initiator first
updates TDT(Ti) and TST(Ti). Updating TDT(Ti) has the following steps:

1 transforms Ti to Tj for all relevant acquaintees Pj in П.

2 inserts an edge from Ti to each Tj

3 propagates each Tj to the respective acquaintee.

 520 M. Masud and S. Aljahdali

Figure 4 Transaction execution protocol

Meanwhile, updating TST(Ti) changes the status of a transaction based on the response
received from the participants. In Section 3.1, we discussed how the status of a TST
changes. When global execution phase starts, the initiator waits for responses from the
participants. For each response, the initiator updates the TDT and TST. Updating TDT(Ti)
also includes sending forward and terminate control messages. When a forward message
is sent to a participant, the participant forwards the component transactions to its
acquaintees generated from Ti. The initiator sends a terminate message when the status of

 Concurrent execution of transactions in a peer-to-peer database network 521

all the nodes of TDT(Ti) becomes acquaintance-level-committed. The termination
condition is checked by the initiator through the checkterminate(Ti) function. Meanwhile,
when a participant receives a transaction, it first executes the transaction locally then
sends response message to the initiator. The response message includes:

1 id of the peer

2 id of the transaction

3 list of component transactions it generates

4 list of peers’ ids to those the peer is waiting to forward the transactions.

When a participant receives a forward message, it then forwards the remote transactions.
A peer terminates the execution of a transaction when it receives a terminate message.

Note that, a transaction can involve in a conflict during different states of the
transaction. In the next section, we describe the mechanism of dealing with conflicts.

4 Candidate transaction selection protocol

In this section, we propose a protocol that selects a candidate transaction from the
conflicting transactions that will eventually be executed in the network. Selecting a
candidate transaction is required when more than one transactions conflict with each
other during their execution in the network and the transactions are generated from
multiple peers. Consider a situation where a peer receives two updates generated from
two peers that modify a tuple in the database. Without the execution knowledge of other
peers, the peer is unable to make a decision which one to accept or reject. Due to the
arbitrary topology of a peer-to-peer database network, a conflict between the same pair of
updates may occur at different peers during their propagation. In order to keep the
databases consistent, each peer must reach the same decision to execute the updates.

We already mentioned that each peer maintains a CG for keeping the conflict
relationship among transactions by implementing any existing conflict detection
technique. According to the protocol, when a peer detects a conflict, the peer informs the
conflict information to the initiators of the transactions and stops further execution and
propagation of the transactions. For example, consider a situation where a peer Pk has
executed a transaction T1 before a transaction T2 arrives. When T2 arrives at Pk and T2
conflicts with T1, then Pk sends the conflict information to both the initiators of T1 and T2.
Assume that T1 and T2 are originated at P1 and P2, respectively. Now, P1 and P2 detect a
candidate transaction that will continue its execution. However, the victim transaction
will be compensated. When a transaction is selected as a victim, the initiator of the victim
transaction sends a compensate message to the participating peers of the victim
transaction. After successful compensation, the peer which originated the victim
transaction informs the originator of the candidate transaction. This decision enables the
candidate transaction to continue its execution further in the network. In the proposed
protocol, the initiators use a leader election algorithm to select the victim and the
candidate transaction. Essentially, we adopt the concept of a universal leader election
algorithm, called Mega-Merger (Santoro, 2006), to select the candidate transaction.
Since, we consider the semantic conflict between transactions, therefore a single
transaction must be executed in the network among the conflicting transactions. In the

 522 M. Masud and S. Aljahdali

following, we discuss the concept of the Mega-Merger leader election protocol and
simultaneously, we show how this concept fits our protocol for selecting the candidate
transaction.

4.1 Concept of the Mega-Merger protocol

Mega-Merger is an efficient protocol for a leader election and the main feature of this
protocol is that it is topology independent. In this protocol, nodes are treated as small
villages, and edges are roads with different names and distances. A group of villages has
a city. Initially, a village is also treated as a city of its own village. The goal is to have all
villages merge into one large megacity. A city, even a village always tries to merge with
the closest neighbouring city. When a merge of two cities takes place there are several
important issues are considered:

1 the naming of the new city, the resolution of this depends on how far the involved
cities have progressed in the merging process, i.e., on the level they have reached,
and on whether the merge decision is shared by both cities

2 the decision of which roads of the new city will be serviced by public transports.

When a merge occurs, the roads of the new city serviced by public will be the roads of
the two cities already serviced plus only the shortest road connecting them. In the
following we describe the basic principles of the election algorithm and show how does it
fit in our protocol.

• A city is a rooted tree; the nodes are called districts, the root is also known as
down-town. Similarly, in our protocol, when a global transaction is executed in the
network, a TDT is constructed. The transaction when it is originated becomes the
root of the tree and all the remote transactions generated in the network progressively
can be treated as districts.

• Each city has a level and a unique name; all districts eventually know the name and
the level of their city. Similarly, in our framework, the initiator knows how many
peers have executed the transactions successfully, since each participant sends a vote
message to the initiator after the execution of a transaction. We can treat this count
as a level of a global transaction. The level of a global transaction Ti is denoted by
level(Ti). In Mega-Merger, all districts know the name of their city. Similarly, all the
participants of a transaction know the initiator of the transaction.

• Edges are roads, each with a distinct name and distance. In TDT, edges are
acquaintance links through which a transaction has propagated. However, TDT does
not need any name and distance concept for the edges.

• Initially, each node is a city with just one district, itself, and no roads. All cities are
initially at the same level, i.e., zero. Similarly, when a transaction is originated at a
peer and is executed locally, it can be treated as a city with one district, i.e., the
transaction itself.

• A city merges with its closest neighbouring city to become a bigger city. To request
the merging, a Let-us-Merge message is sent on the shortest road connecting it to the
city. In the proposed protocol, there is no specific merge request from the originator
of a transaction. The merging of two TDTs starts corresponding to two global

 Concurrent execution of transactions in a peer-to-peer database network 523

transactions when the transactions conflict in a peer during the construction of the
TDTs. A merging situation occurs in an acquaintance link when a peer receives a
transaction from an acquaintee through the acquaintance link and the received
transaction conflicts with a transaction that is active in that peer. In this case, we can
treat the edge as a merge link.

• When a merge occurs, the roads of the new city serviced by public transport will be
the roads of the two cities already serviced plus only the shortest road connecting
them. In our protocol, when a transaction becomes a candidate then the merge
process starts. In the merge process, first the peers that executed the victim
transaction are considered for the execution of the candidate transaction. This results
the merge of TDT of the victim transaction with the TDT of the candidate
transaction. For merging, the candidate transaction starts its execution along the
edges of TDT of the victim transaction. The propagation of the candidate transaction
starts from the merge link. Before, the propagation starts, the initiator of the victim
transaction first sends a compensate message to all the participants of the victim
transaction in order to revert the execution effect of the victim transaction.

4.2 Selection of a candidate transaction

In this section we describe the process of selecting a candidate transaction from the
conflicting transactions. A candidate is selected using two resolution protocols. The
protocols are friendly resolution and absorption resolution. In the following, we discuss
the protocols.

Consider two transactions Ti and Tj originated by Pi and Pj, respectively. Also,
assume that Ti and Tj are conflicting transactions. The TDTs are denoted by TDT(Ti) and
TDT(Tj), and the levels of the trees are denoted by level(Ti) and level(Tj), respectively.

• Friendly resolution (level(Ti) = level(Tj)): There are two cases in friendly resolution.
a Case 1: A participant Pm of Ti forwards Ti to a participant Pq of Tj and Pq also

forwards Tj to Pm.
• Solution: When Pm and Pq identify a conflict, they inform both the initiators

of Ti and Tj. After receiving the conflict information, Pi and Pj choose one
of the transactions as a candidate transaction and the other becomes a victim
transaction. Consider that Ti is selected as a candidate transaction. When Ti
is selected as a candidate transaction, the edge Pm → Pq becomes the merge
link. After selecting the candidate, merging of TDT(Tj) into TDT(Ti) starts.
There are two phases of merging:
1 compensation
2 merging.

During the merge process, the status of Tj changes to compensate and the
compensation phase begins. During the compensation phase, no new transaction is
allowed to execute by the peers those are involved in constructing TDT(Tj) and
TDT(Ti) and the further propagation of the transactions Ti and Tj is stopped. In
order to begin the compensation phase, Pj sends a compensation message to all the
participants of Tj. Each participant now generates a compensate transaction jT − and

completes the compensation task. After compensation is done Pj informs the initiator

 524 M. Masud and S. Aljahdali

of Ti that the compensation is completed. Now the merging process starts. The
merging process starts from the merge link. In the merging process, execution of the
candidate transaction starts to the participants of the victim transaction from the
merge link. Figure 5a illustrates the conflict scenario. Consider that Ti is select as a
candidate transaction. Therefore, the merge link is Pm → PQ. The merge process is
depicted in Figure 5b. The bold edges show the merging of TDT(Tj) with TDT(Ti)
and the propagation of Ti in TDT(Tj). After merging process is finished, all the
participants of Tj become participants of Ti. Now, the execution of Ti starts. After the
merge process, the level(Ti) is set to the summation of the level(Ti) and level(Tj).

Figure 5 Friendly resolution, (a) two TDTs have the same level considering that Ti and Tj are
conflicting transactions (b) Ti is chosen as candidate and TDT(Tj) merged with TDT(Ti)

(a) (b)

b Case 2: A participant Pm of Ti receives Tj from a participant Pq of Tj.
• Solution: When Pm identifies the conflict, it informs both the initiators of Ti and

Tj. Now, the same solution is applied as described in Case 1.

• Absorption resolution (level(Ti) ≠ level(Tj)):
a Case 1: A participant Pm of Ti forwards Ti to a participant Pq of Tj and Pq also

forwards Tj to Pm.
• Solution: When Pm and Pq identify a conflict, they inform both the initiators

of Ti and Tj. If level(Ti) > level(Tj) then both Pi and Pj select Ti as a
candidate transaction. Therefore, TDT(Tj) is absorbed by TDT(Ti) and
merging from the link Pm → Pq starts. Otherwise, TDT(Tj) is absorbed by
TDT(Ti) and merging from the link Pq → Pm starts. The merging process is
the same as described in the friendly resolution.

b Case 2: A participant Pm of Ti receives Tj from a participant Pq of Tj.
• Solution: When Pm identifies the conflict, it informs both the initiators of Ti

and Tj. Now, the same solution is applied as described in Case 1.

In the discussion above, we only consider the situation when two transactions are
conflicting. However, there are several critical situations may occur. For example, a
transaction may involve in conflict with multiple transactions during the construction of
TDT or the transaction may involve in conflict during merge process with another
transaction. In the later case, the execution of the new transaction is suspended until
previous resolution decision is made. For example, a transaction Tk conflicts with a

 Concurrent execution of transactions in a peer-to-peer database network 525

transaction Tj and Tj is in merge process with Ti. In this case the execution of Tk is
suspended. After the merge process of Ti and Tj is finished, the conflict resolution
between Tj and Tk is started. If Tj becomes the candidate then merge starts with Tj
otherwise it will merge with Ti.

The first case is little bit complex. For example, at peer Pn, Ti conflicts with Tj and Tk.
If the conflict between Ti and Tj happens before the occurrence of a conflict between Ti
and Tk, then the conflict between Ti and Tj is resolved. If the conflict happens
simultaneously, then Pn informs both the conflict information to the initiator of Ti. The
initiator of Ti decides which one should be resolved first by considering the levels of Tj
and Tk. The other transaction is suspended. The situation becomes more critical when
conflicts occur in two different peers participating in the construction of TDT(Ti). For
example, at Pn, Ti conflicts with Tj and at Pm, Ti conflicts with Tk. Also in this case, the
initiator of Ti decides which one should be resolved first by considering the levels of Tj
and Tk.

In the following, we show an example of the candidate transaction selection.

Figure 6 Selection of a candidate transaction

Consider Figure 6 where two peers P1 and P2 originated two conflicting transactions T1
and T5 in the network.

• Step 1: P1 has generated a component transactions 2
1T from T1 for peer P2 and

forwarded to P2. Meanwhile, P5 also generated two component transactions 2
5T and

3
5T from T5 for peers P2 and P3 and forwarded to them. Assume that 2

5T executed

before 2
1T at P2. Therefore, the conflict relation between T1 and T5 at P2 is 2 2

1 5 .T T→

P3 also executed 3
5T and waits for the forward message to forward T5 to P6.

• Step 2: After detecting the conflict, P2 sends the conflict information to the initiators
of T1 and T5, i.e., P1 and P5.

 526 M. Masud and S. Aljahdali

• Step 3: Initiators P1 and P5 decide the candidate transaction. In this case,
level(T1) < level(T2). Therefore, absorption protocol is applied, hence both P1 and P5
select T5 as a candidate transaction.

• Step 4: P1 sends a compensate transaction 1T − to P2. After the compensation phase,
P1 informs P5 that the compensation of T1 is complete. P5 now sends a forward
message to P2 and P3 to forward T5.

• Step 5: After receiving the forward message P2 forwards T5 to P1 and P4. On the
other hand, P3 forwards T5 to P6.

• Step 6: Since, there is no new conflict and all the peers executed T5, termination of T5
starts and terminated successfully.

4.3 Discussion

In the proposed protocol, it does not require any global knowledge of a network topology
for processing transactions. However, it seems that an initiator can become a bottleneck
of the system since all participating peers need to connect to it before taking the next step
to process a transaction. It is also possible that too many requests are sent to the initiator
in a very short period of time. Also, the protocol may have a high complexity when
several peers update the data at the same time. These seem to be the limitations of the
approach.

However, we assume that in a peer-to-peer database network, the global level
transactions are not frequent and inconsistency of data in peers can be tolerated for the
time being since transactions are not OLAP transactions. A transaction is only forwarded
to its acquaintees only to resolve inconsistencies between peers. Moreover, one can claim
that the design actually centralised since an initiator always need the global knowledge.
However, this is not the case since we do not assume any dedicated controller who
always monitor the global execution of transactions. Only the peer who initiates a
transaction becomes the coordinator of the transaction during the execution period of the
transaction in the system.

5 Evaluation

In this section, we show different experimental evaluations of the proposed transaction
processing mechanism. In order to evaluate the performance over relatively large P2P
settings, we implemented a simulator as a single java-based application. In the simulator,
all peers are run within the same Java Virtual Machine. Each peer is implemented as a
distinct thread and implements a FIFO queue for message communication. The
environment consisted of a single Windows XP machine with Intel Pentium 4 CPU
3.40 GHz and 1 GB of RAM. Each peer is connected to a database that is instantiated as a
MySQL 5.0 database. The experiments were evaluated with different size of networks,
namely 100, 200, 300, 400, and 500. For each of the networks, the simulator generated
schemata and contents of the peers’ databases, as well as the peers’ acquaintances. The
operations of a transaction are MySQL select (read operation) and update (write
operation) commands. Since all the peers ran on the same machine, there were no
network delays. On the other hand, some delays were introduced because of database

 Concurrent execution of transactions in a peer-to-peer database network 527

access times. To detect a conflict between transactions, we only consider write-write
conflicts between transactions. Note that a conflict is considered in tuple level. Therefore,
when a transaction executes in a peer, the conflict detection module determines the
conflict based on the key value of tuples accessed by two transactions.

The first goal of the experiment is to compare the response time of a transaction in
different types of networks, namely, in tree, chain, and arbitrary networks, which contain
cycles, for evaluating the efficiency of the proposed protocol. The result of the evaluation
is shown in Figure 7. The number of peers in the networks is 100. The size of the
transaction is 5. The transaction size means the number of update operations in a
transaction. We observe that the changes in response time of a transaction in different
networks are not large. This is due the fact that each peer directly communicates with the
initiator for processing a transaction. In a chain network, the response time is little higher,
but compared to the time in other networks the change is not large. In a chain network, a
transaction is executed along the chain of 100 peers. The initiator receives the final
response lately from the last peer in the network. Overall, the response time deviates
slightly in different types of networks, this proofs the efficiency of the protocol.

Figure 7 Response time of a transaction in different types of network

We also evaluate the response time of a transaction of the proposed protocol considering
the different size of networks. The network size means number of peers in the network.
For each network, the topology is arbitrary which may contain cycles. The result of the
evaluation is depicted in Figure 8. We observe that response time increases linearly with
the size of networks. This shows the scalability of the protocol. We are also concerned
about the number of messages generated for executing a transaction in each network. The
result is shown in Figure 9. We observe that number of messages increases linearly with
the size of networks.

Figure 8 Response time of a transaction in different size of networks

 528 M. Masud and S. Aljahdali

Figure 9 Number of messages in processing a transaction

We also evaluated the transaction processing protocol considering a conflict situation
among transactions. Mainly, we wanted to observe, how the conflict resolution protocol
affects the execution time of transactions. For this experiment, the transactions are
generated concurrently from ten peers in a 100 peers network. The size of each
transaction is 5. The transactions are generated in such a way that they involve in a
conflict in increasing number. In the first case, there is no conflict among the
transactions. We call it conflict free. In the second case two transactions are involved in a
conflict, in the third case three transactions, and so on. We consider maximum five
transactions are involved in a conflict. The result of the experiment is shown in
Figure 10. Our observation from the result is that the execution time increases with
increase number of conflicts but the impact on execution time is not a major inhibiting
factor. We see that the execution time grows gradually with the increased number of
conflicts. This shows the efficiency of the conflict resolution protocol.

Figure 10 Response time of transactions in conflict situations

6 Related work

In the following, we analyse some related works and show the differences with our
model.

Haller et al. (2005) proposed a concept of transaction processing in P2P environment
relying on a decentralised serialisation graph. In this model, each peer and each
transaction maintain a local serialisation graph. The serialisation graph of the peer
reflects the dependencies of the transactions that invoked service calls on that peer
whereas the serialisation graph of the transaction includes the dependencies in which the

 Concurrent execution of transactions in a peer-to-peer database network 529

transaction is involved. However, in our approach, peers are involved in resolving the
conflict not the transactions themselves. This reduces the overhead of the transaction
message. Moreover, in Haller et al. (2005), the peers that will be involved in processing a
transaction is predetermined. Therefore, clients of a peer should have the global
knowledge of the resources. However, in our framework, users are only aware of the
local sources. Transactions are processed progressively in other peers in the network
based on the mappings with the local peer where the transaction is submitted.

Cetintemel et al. (2003) proposed a decentralised peer-to-peer transaction approach in
a replicated system. The protocol uses the concept of voting. The protocol assumes that
number of peers is fixed and each peer owns an equally distributed currency value. The
total value of the currency in the network is 1.0. A transaction commits in the system
when it is guaranteed that no conflicting transaction can obtain more votes.

In our approach, the number of peers is unknown in the system; therefore no fixed
currency can be applied in each peer. A candidate transaction is selected from the
conflicting transactions using a leader election protocol. The transaction which becomes
the leader finally executes in the network. Moreover, a transaction may not execute in all
peers in the network. Therefore, we can not assume a fixed currency for each peer. A
transaction acquires a level progressively during its execution. Based on the level a
candidate transaction is selected.

Taylor and Ives (2006) proposed a database reconciliation mechanism in a
decentralised collaborative data sharing environment. Here conflicts are resolved using
the priority of updates and the provenance information. The approach requires centralised
provenance information for resolving conflicts. Otherwise, same update may be accepted
by one peer and rejected by another peer.

However, in our approach, initiators of the updates resolve a conflict using majority
consensus policy.

Terry et al. (1995) proposed a replicated database system to support collaboration
among users in a weakly connected network. Transactions are broadcast between sites
using an epidemic propagation protocol. It first executes transaction in their tentative
order, then rolls back and replays them in final order. If the transaction is accepted by a
primary site, the final timestamp is assigned to the update. Hence, the final execution of
transactions relies on a primary site that enforces a global continuous order on a growing
prefix of history.

However, in our system there is no primary site. Every peer executes transactions and
resolves conflicts independently. Also, in our system, updates are propagated along the
mappings between peers. Using a primary site may as mentioned in Terry et al. (1995)
constitutes a congestion point, and, anyway is not suitable in a peer-to-peer system.

In Androutsellis-Theotokis et al. (2004), the authors presented a preliminary proposal
for a peer-to-peer e-business transaction processing system. More specifically, the paper
focuses on requirements analysis of different aspects of the collaboration and transaction
procedure. However, it lacks precise semantics of transactions and does not describe the
execution semantics of transactions.

SchÄutt et al. (2008) presented a distributed key/value store based on the Chord
structured overlay with symmetric data replication and a transaction layer implementing
ACID properties. The protocol works very well for asynchronous collaborative
applications where data are symmetric. In Mejas and van Ro (2010), the protocol has
been extended to support eager locking, making it feasible to build synchronous
collaborative applications. In both cases, locks are the only way to guarantee atomicity,

 530 M. Masud and S. Aljahdali

concurrency control and strong consistency. Unfortunately, locks are not the best
abstraction for P2P systems, and it is highly desirable to avoid them whenever possible.

Logoot (Weiss et al., 2009) is a scalable optimistic replication algorithm for
collaborative editing on P2P Networks. Logoot ensures causality, consistency and
intention preservation criteria. In Logoot, a single operation is considered. It mainly
works with replicated system where multiple edit transactions may execute concurrently
on the same data item. However, we consider a database transaction model which is
consists of many data operations. Our approach works with a P2P data sharing
environment where data is shared but not replicated.

7 Concluding remarks

In this paper, we present an approach for executing concurrent transactions in a
peer-to-peer database network. Our approach is scalable because a participant does not
need any global knowledge of the execution status of a transaction and there is no global
coordinator. Transactions are processed by each peer independently. Only the initiators of
the transactions are responsible for monitoring the global execution of the transactions.
We also present a candidate transaction selection protocol from the conflicting
transactions that run in the network concurrently.

A future goal is to investigate the transaction processing considering the dynamic
behaviour of peers. Further, we are interested to propose a recovery mechanism of
transaction in a peer-to-peer database network. We also plan to investigate the efficiency
of the protocol considering a large network by comparing with existing protocols.

References
Androutsellis-Theotokis, S., Spinellis, D. and Karakoidas, V. (2004) Performing Peer-to-Peer

E-business Transactions: A Requirements Analysis and Preliminary Design Proposal, IADIS.
Bernstein, P., Hadzilacos, V. and Goodman, N. (1987) Concurrency Control and Recovery in

Database Systems, Addison Wesley, Reading, MA.
Breitbart, Y. and Silberschatz, A. (1988) Multidatabase Update Issues, ACM SIGMOD.
Breitbart, Y., Garcia-Molina, H., Silberschatz, A. (1992) ‘Overview of multidatabase transaction

management’, VLDB Journal, Vol. 1, No. 2.
Cetintemel, U., Keleher, P.J., Bhattacharjee, B. and Franklin, M.J. (2003) ‘Deno: a decentralized,

peer-to-peer object-replication system for weakly connected environments’, IEEE
Transactions on Computers, Vol. 52, No. 7.

Dayal, U., Hsu, M. and Ladin, R. (1991) A Transactional Model for Long-running Activities,
September, VLDB, Barcelona, Spain.

Ganarski, S., Naacke, H., Pacitti, E. and Valduriez, P. (2007) ‘The leganet system: freshness-aware
transaction routing in a database cluster’, Information Systems, Vol. 32, No. 2.

Garcia-Molina, H. and Salem, K. (1987) Sagas, ACM SIGMOD.
Gray, J. and Reuter, A. (1993) Transaction Processing: Concepts and Techniques, Morgan

Kaufmann Publishers.
Halevy, A., Ives, Z., Suciu, D. and Tatarinov, I. (2003) Schema Mediation in Peer Data

Management System, ICDE.

 Concurrent execution of transactions in a peer-to-peer database network 531

Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D. and Tatarinov, I. (2004) ‘The piazza
peer-data management system’, IEEE Transactions on Knowledge and Data Engineering,
Vol. 16, No. 7.

Haller, K., Schuldt, H. and TÄurker, C. (2005) Decentralized Coordination of Transactional
Processes in Peer-to-Peer Environments, CIKM.

Kementsietsidis, A., Arenas, M. and Miller, R.J. (2003) Mapping Data in Peer-to-Peer Systems:
Semantics and Algorithmic Issues, SIGMOD.

Masud, M. and Kiringa, I. (2007) Acquaintance Based Consistency in an Instance-Mapped P2P
Data Sharing System During Transaction Processing, CoopIS.

Mejas, B. and van Ro, P. (2010) ‘Beernet: building self-managing decentralized systems with
replicated transactional storage’, International Journal of Adaptive, Resilient and Autonomic
Systems (IJARAS), Vol. 1, No. 3, pp.1–24.

Moss, J. (1985) ‘Nested transactions: an approach to reliable distributed computing’, PhD thesis,
MIT Press, Cambridge, MA.

Rodriguez-Gianolli, P., Garzetti, M., Jiang, L., Kementsietsidis, A., Kiringa, I., Masud, M.,
Miller, R. and Mylopoulos, J. (2005) Data Sharing in the Hyperion Peer Database System,
VLDB.

Santoro, N. (2006) Design and Analysis of Distributed Algorithms, Wiley InterScience Publisher.
SchÄutt, T., Schintke, F. and Reinefeld, A. (2008) ‘Scalaris: reliable transactional p2p key/value

store’, ERLANG’08: Proceedings of the 7th ACM SIGPLAN Workshop on ERLANG,
pp.41–48.

Schuldt, H., Alonso, G., Beeri, C. and Schek, H. (2002) ‘Atomicity and isolation for transactional
processes’, ACM Trans. Database System, Vol. 27, No. 1.

Serafini, L., Giunchiglia, F., Molopoulos, J. and Bernstein, P. (2003) Local Relational Model: A
Logocal Formalization of Database Coordination, Technical report, Informatica e
Telecomunicazioni, University of Trento.

Taylor, N.E. and Ives, Z.G. (2006) Reconciling while Tolerating Disagreement in Collaborative
Data Sharing, SIGMOD.

Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J. and Hauser, C.H. (1995)
‘Managing update conflicts in Bayou, a weakly connected replicated storage system’, Proc. of
the ACM Symposium on Operating Systems Principles.

Weiss, S., Urso, P. and Molli, P. (2009) ‘Logoot: a scalable optimistic replication algorithm for
collaborative editing on P2P networks’, 29th IEEE International Conference on Distributed
Computing Systems, pp.404–412.

