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Abstract: Transaction execution in a peer-to-peer database network specifies 
an update made to a peer’s instance is applied to the peer’s local database and 
propagated to related peers. Maintaining a successful execution of a transaction 
in such a network is challenging due to the dynamic behaviour of peers and 
unstructured topologies of networks. In this paper, we present a decentralised 
transaction execution process that guarantees the correct execution of a 
transaction without relying on any global coordinator. In the network, a peer 
executes a transaction and provides the local execution information to the 
initiator of the transaction. The initiator of a transaction plays important roles 
for the successful execution and termination of a transaction. Transactions 
originated from different peers may involve in a conflict during their execution 
in the network. In this paper, we also show a process to resolve conflicts using 
a universal leader election algorithm, called Mega-Merger. 
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1 Introduction 

In the last few years, steady progress has been made in research on various issues related 
to peer data management systems, such as data integration models (Halevy et al., 2003), 
mediation methods (Halevy et al., 2004), coordination mechanisms (Serafini et al., 2003; 
Rodriguez-Gianolli et al., 2005), and data-level mappings (Kementsietsidis et al., 2003) 
among the peer databases. These systems combine both P2P and database management 
system functionalities. The local databases on peers are called peer databases. Each peer 
chooses its own database schema and maintains data independently. Contrary to the 
traditional data integration systems where a global mediated schema is required for data 
exchange, in peer data management systems semantic relationships exist between two 
peers, or among a small set of peers for sharing data. The data is accessed globally from 
any peer by traversing the network of peers. 

There is an increasing interest in the creation of peer data management systems, 
which includes establishing and maintaining mappings between peers and processing 
queries using appropriate propagation techniques. While there is a rich body of research 
concerning frameworks and mapping issues among peers, dynamic aspects of data in 
such systems have received much less attention. For example, in many data sharing 
efforts, particularly in biological and health sciences, data in sources are continuously 
corrected and cleaned by the users of the local sources. In this case, the exchange of 
updates among sources is equally important in order to keep the peers updated with the 
cleaned data. In such an update exchange, a question of significant interest is how to 
define consistency during the exchange and processing of updates, while still allowing 
autonomy among the peers. Surprisingly, little work has addressed update exchange 
mechanisms for peer data management systems. 

Peers in a peer-to-peer database network are autonomous and there is no global 
control of the execution of transactions. Therefore, during propagation of transactions, 
different conflicting situations with respect to transactions may occur which lead to data 
inconsistency in the network. Hence, a conflict resolution protocol is required to select 
the candidate transaction from the conflicting transactions. 

In this paper, we consider this problem of consistent execution of transactions and 
propose a decentralised mechanism for resolving conflicts. In this approach, conflicts are 
resolved in a decentralised collaborative fashion by exchanging some status information 
of the transactions between the initiator and participants. In the process, a peer that 
executes a given transaction is called a participating peer or simply a participant. The 
status information provided by a participant to initiators includes the local execution 
status of the transaction, the local conflict information, and the transactions spawned by 
the participant. Essentially, each participant exchanges information with the transaction’s 
initiator during the execution of a transaction. The initiator plays an important role for the 
correct execution, conflict resolution, and termination of transactions. Initiators of the 
conflicting transactions select a candidate transaction and the candidate transaction is 
finally executed in the network. A candidate transaction is selected using a universal 
leader election protocol, called Mega-Merger (Santoro, 2006). The Mega-Merger 
protocol is selected since it runs in every network, requires no a priori knowledge of the 
topology of the network nor its properties. 

The paper is organised as follows: Section 2 presents the system model of a  
peer-to-peer database network and describes the properties of a global transaction. 
Section 3 describes the execution protocol of a global transaction and Section 4 presents 
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the process of selecting a candidate transaction from the conflicting transactions.  
Section 5 presents results we achieved from experiments and Section 6 reviews related 
work. Finally, Section 7 concludes. 

2 System model 

We assume a peer-to-peer database network with a set of peers P = {P1,P2,…,Pn} where 
each peer Pi has a pre-existing database DBi. Each peer has full control over its local 
database (e.g., modify schema, update data in the database). Each peer also establishes 
mappings with other peers in the network in order to share data. Mappings specify data 
sharing constraints between peers. 

In P2P, there are two types of mappings, schema-level (Halevy et al., 2004) and  
data-level (Kementsietsidis et al., 2003). A schema-level mapping is a logical assertion of 
the form: 

, ( ( , ) ( , ))x y x y z x zφ∀ → ∃ Ψ  

where the left hand side (LHS) of the implication, φ, is a conjunction of atoms over 
variables  and ,x y  and the right hand side (RHS) of the implication, Ψ, is a conjunction 
of atoms over variables  and .x z  The mapping expresses a constraint about the existence 
of a tuple in the instance on the RHS, given a particular combination of tuples satisfying 
the constraint of the LHS. Data-level mappings can be established using mapping tables 
(Kementsietsidis et al., 2003). A mapping table is a relation over the attributes X,Y, where 
X ⊆ Ui and Y ⊆ Uj are non-empty sets of attributes from two peers Pi and Pj. A tuple  
(a, b) in a mapping table indicates that the value a ∈ dom(X) is associated with the value  
b ∈ dom(Y). Mapping tables are generally used when there is data level heterogeneity 
between peers. Mappings in mapping tables also store data sharing constraints between 
two peers corresponding to the associations in mapping tables. Without loss of generality, 
we assume that mappings are in placed by the administrator of each peer using common 
agreements when they want to share data. The construction of mappings mij forms an 
acquaintance (i, j) between Pi and Pj. Here, Pj and Pi are acquaintees of each other. 

2.1 Transaction model 

A transaction consists of a sequence of read-and-write (update) operations on data items. 
A transaction is classified as a read-only transaction or an update transaction. A  
read-only transaction consists of only read operations that executes in the network 
without involving in the proposed conflict resolution protocol. This allows a read-only 
transaction to terminate its execution without being blocked. On the other hand, an 
update transaction consists of a sequence of write operations that is executed in the 
network may involve in the proposed conflict resolution protocol. 

In a peer-to-peer database network, when a user submits a transaction Ti to a peer Pi, 
the transaction is executed at Pi and appropriate actions are performed in its local 
database DBi. Peer Pi is called the initiator of Ti. For maintaining data consistency 
between peers, whenever changes occurs in data at Pi by Ti, the data in each acquaintee Pj 
of Pi need to be changed. However, this is subject to the satisfaction of the mapping Σij 
between Pi and Pj. If the data accessed by Ti satisfies the mapping Σij then Pi forwards Ti 
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to its acquaintees. Before forwarding Ti, Pi transforms Ti wrt the schema of its 
acquaintees. The transformation of Ti for an acquaintee Pj is denoted by .j

iT  When Pj 

receives Ti in transformed form ,j
iT  Pj also executes Ti and forwards Ti to its 

acquaintees. This is a recursive process. Base cases of the recursion are peers those have 
no acquaintees to forward the transaction, i.e., the peers have no mappings with any other 
peer. We call these peers terminate peers. Therefore, a transaction is propagated from the 
initiator to all related peers until the transaction propagation ends at terminate peers. 
Hence, from an initial transaction, a set of transactions is generated dynamically in the 
network. The initial transaction is called a global transaction since the transaction is 
executed in the network. The set of transactions generated from the global transaction are 
called remote transactions. The semantics of global and local transactions is discussed in 
(Masud and Kiringa, 2007). 

We now describe the logical structure of a global transaction generated from a 
transaction Ti originated at Pi. When Pi produces a set of remote transactions from Ti for 
the execution in its immediate acquaintees, Ti can be viewed as a two-level global 
transaction. In this case, Ti becomes the root. Ti becomes a multi-level global transaction 
when the acquaintees of Pi also generate remote transactions for their respective 
acquaintees. Consequently, a global transaction may have multiple layers depending on 
the number of hops it propagates. Intuitively, as remote transactions are generated in the 
system acquaintance-by-acquaintance, a transaction dependency graph is induced. The 
nodes in this graph represent remote transactions and there is an edge from a transaction 

j
iT  to a transaction ,k

iT  if k
iT  has resulted from the propagation of j

iT  by Pj to Pk. 
When a peer receives a transaction, the transaction is either executed (if the transaction 
does not involve in a conflict with any other transaction originated by another peer) or is 
blocked or halted (if conflict occurs). If a transaction is blocked then it participates in the 
election process to become a candidate. When the transaction becomes a candidate, the 
execution of the transaction continues. If the transaction fails to become a candidate, it is 
compensated and no further execution of the transaction occurs. The more details is 
provided in Section 4. Note that cycles can exist in the network topology. Therefore, a 
peer can receive the same transaction from multiple paths from a peer that originated the 
transaction. We assume that when a peer receives the same transaction it just discards the 
transaction that is later received. 

The execution of a transaction in a peer-to-peer database network is different from 
other extended transaction models, such as nested transactions (Moss, 1985), sagas 
(Garcia-Molina and Salem, 1987), etc. The difference is that the set of component 
transactions to be invoked in a peer-to-peer database is not known in advance. The 
component transactions are generated dynamically based on mappings between peers. In 
this respect, transactions in a peer-to-peer database network are closest to the 
transactional model for long running activities proposed in Dayal et al. (1991). Moreover, 
each of the transaction generated from the initial transaction is an atomic transaction 
resulted from the direct or indirect propagation in the network. Each transaction accesses 
data items only at the local peer. Unlike a transaction in a multi-database system 
(Breitbart and Silberschatz, 1988; Breitbart et al., 1992), a transaction is not decomposed 
into sub-transactions to access data at different peers. 

There is also a difference between a distributed transaction model and P2P transaction 
model. In a distributed transaction model global level transactions are issued to the global 
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transaction manager (GTM), and are decomposed into a set of sub-transactions to be 
individually submitted to the corresponding LDBSs. However, in our P2P transaction 
model, a global transaction is not decomposed but rather is propagated as an entire 
transaction. A peer, after executing a transaction locally, forwards the entire transaction 
(not the individual read-and-write operations that constitute the transaction) to its 
acquaintances. The remote peer that receives the transaction considers the transaction as 
submitted by local users. In a distributed transaction model, transactions are executed 
under the control of the GTM. In contrast, a P2P transaction model is built on a network 
of peers without a GTM or controller. However, we assume that each local database 
management system preserves the atomicity, consistency, isolation, and durability 
(ACID) properties (Bernstein et al., 1987) of transactions and ensures serialisability of 
the local schedule using the local concurrency protocol since the LDBSs are pre-existing. 
In a traditional distributed database system, serialisability is ensured using the distributed 
two-phase (2PL) protocol (Bernstein et al., 1987) and atomicity of transactions is ensured 
using the two-phase commit (2PC) protocol (Bernstein et al., 1987). However, in a P2P 
transaction model, application of these protocols is not feasible or applicable. 

2.2 Transaction execution life cycle 

A transaction may have different execution status during its execution in a peer-to-peer 
network depending on the execution level of the transaction. The levels are execution of a 
transaction in a peer, in acquaintees, and in a network. We categorise the execution status 
into three transaction state groups, namely, local, acquaintance-level, and global. The 
local states show the execution status of a transaction in a peer, the acquaintance-level 
states show the execution status of a transaction in the immediate acquaintees of a peer, 
and the global states show the status of a transaction in the network. In the following we 
describe the groups and the states. In Figure 1, we depict the states of a transaction during 
its execution in a peer to peer network. 

2.2.1 Local 

Local states symbolise the different sates of a transaction during its local execution in a 
peer. There are three different local states, namely, start, locally-aborted (LA), and 
locally-committed (LC). 

The start state symbolises the beginning of execution of a transaction in a peer. A 
transaction can be LA or LC in a peer. If a transaction is successfully executed in a peer, 
it is committed by the local transaction manager of the peer and the state of the 
transaction changes from start to LC state. A change of state is denoted by an arrow in the 
Figure 1. However, if the transaction is aborted due to the failure of execution, the state 
becomes LA. Examples of a transaction abort are a transaction abort to timeout, or a 
failure to pass the validation test by the transaction manager of a peer. The transaction 
manager starts execution of a LA transaction after the recovery steps that are managed by 
the recovery manager of the database management system in the peer. The details of the 
recovery process can be found in Gray and Reuter (1993). If a peer finds the state of a 
transaction in LC state, the peer forwards the transaction to its acquaintees and the state 
of the transaction is changed from LC to acquaintance-level-to-be-committed state. Now, 
the peer waits for the successful execution of the transaction in its acquaintees. The state 
of a transaction can be changed from LC to compensate state as shown in the Figure 1 if 
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the transaction is involved in a conflict with another transaction before forwarding the 
transaction to its acquaintees. In this case, the transaction is selected as a victim for 
compensation and the state is changed from LC to compensate. In global state, we talk 
about compensate state and in Section 4, we describe the situation when a transaction is 
selected as a victim transaction. 

Figure 1 States of a transaction 

 

2.2.2 Acquaintance-level 

There are two states in this group, namely, acquaintance-level-to-be-committed (ALC) 
and acquaintance-level-committed (AC). These two states symbolise the execution status 
of the forwarded transaction in the immediate acquaintees of a peer. The ALC state 
symbolises that the forwarded transactions are to be committed at acquaintees and the AC 
state symbolises that the forwarded transactions are successfully committed at the 
acquaintees. If the acquaintees committed the transaction, the state of the transaction 
changes to acquaintance-level-committed for that level of acquaintance from which the 
transactions are forwarded. The state of a transaction can be changed from ALC to 
compensate state if a forwarded transaction in an acquaintee involves in a conflict with 
another transaction that the acquaintee received from another peer. The decision is made 
by the conflict resolution protocol described in Section 4. 

2.2.3 Global states 

The global states symbolise the execution status of a transaction in a peer-to-peer 
network. There are two states in this group, namely, terminate and compensate. The 
terminate state of a transaction symbolises that the transaction is successfully committed 
by the participating peers in the network. If a transaction is terminated, all the 
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information related to the execution of the transaction in the network is deleted from the 
participating peers. The compensate state of a transaction symbolises that the transaction 
has involved in a conflict with another transaction and the conflict resolution protocol in 
Section 4 has decided to compensate the effect of the transaction in participating peers. 
This compensation is done by invoking a compensate transaction in reverse order 
(Schuldt et al., 2002). The compensate transaction semantically undoes the effect of the 
execution of the transaction. 

3 Transaction execution 

In this section, we present a transaction execution protocol. The protocol relies on the 
following observations: 

• Conflict graph (CG): Each peer maintains conflict relationships among the active 
transactions in the form of a CG that the peer executes. The transactions that are not 
terminated in the network are called active transactions. A conflict relationship,  
i.e., an edge between two transactions is created in the graph based on the notion of 
potential conflict (Ganarski et al., 2007). According to the definition in Ganarski  
et al. (2007), a potential conflict occurs between two transactions if they access at 
least one data item in common and at least one of the transactions performs a write 
operation on that data item. This potential conflict does not allow a read transaction 
to continue its execution in a P2P network. In a P2P network, a read transaction 
should continue its execution without being halted. This eliminates the abort of a 
read transaction. Since queries are more frequent than updates in P2P networks, 
allowing a read transaction to execute without involving in a conflict resolution 
protocol is logical, though sometimes users will not get the consistent result. We say 
a transaction Ti which is active in a peer Pi potentially conflicts with another 
transaction Tj that is also active in the same peer, if both the transactions access at 
least one data item in common and perform a write operation on that common data 
item. This definition allows a read transaction to execute in the network without 
being halted. Formally, we define a potential conflict as follows: 

• Potential conflict: Let Ti and Tj be two transactions that are active in a peer. Let 
WS(Ti) and WS(Tj) denote the set of data items on which Ti and Tj perform write 
operations respectively. A potential conflict occurs between Ti and Tj if 

( ) ( ) 0.i kWS T WS T ≠ /∩  

• Transaction dependency tree (TDT): Each global transaction initiator maintains a 
dynamic data structure, called TDT, for each global transaction it originates until the 
transaction is terminated in the network. TDT is used to keep the dependency 
relationships among the remote transactions generated from a global transaction in 
the network. The construction of a TDT for a global transaction is discussed below. 

1 When a peer Pi initiates a transaction Ti and successfully executes Ti, the peer 
creates a node for Ti in the TDT of Ti. 
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2 Peer Pi generates remote transactions for its acquaintees and forwards the 
remote transactions. When remote transactions are forwarded, a list of new 
remote transactions at the node Ti of TDT(Ti) is added plus edges are inserted 
between Ti and the newly generated remote transactions. 

3 When a peer receives a remote transaction, it executes the transaction locally 
and generates remote transactions for its acquaintees. 

4 After successfully executing the received transaction, a peer sends a vote 
message to the initiator and waits for a forward message from the initiator in 
order to forward the newly generated remote transactions. When a peer sends a 
vote message, a peer also attaches a list of the newly generated remote 
transactions from the received transaction plus the ids of new acquaintees where 
the peer is ready to forward the new transactions. 

5 When the initiator receives the vote message, it creates nodes for each of the 
new transaction that are in the vote message and inserts edges between the 
newly generated transactions and the remote transaction from which the 
transactions are generated. Initiator now sends a forward message to the sender 
of the vote message. 

6 When a peer receives a forward message it forwards the remote transactions to 
its acquaintees. 

Note that when a peer forwards a transaction, it also forwards the id of the initiator 
and the global id of the transaction. In this way, every peer knows which peer is the 
initiator of the global transaction. Here, we do not show any conflicting scenario 
during the construction of a TDT. In Section 4.2, we shall show how to deal with 
conflicts between transactions generated from different peers. We now give an 
example. 

Figure 2 TDT construction, (a) peer to peer network (b) TDT for the transaction T1 initiated at P1 

  
(a)   (b) 

Figure 2 shows the construction of a TDT corresponding to a transaction T1 that is 
originated at P1. Figure 2a shows a peer-to-peer database network. Figure 2b depicts 
the construction of the tree from T1. After P1 successfully executed T1, it creates a 
node for T1 and it becomes the root of TDT for T1. After that P1 generates two 
remote transactions T2 and T3 from T1 for acquaintees P2 and P3 and forwards the 
transactions. Assume that a remote transaction for a peer Pj is denoted by Tj. P1 now 
inserts an edge from T1 to each of the remote transaction T2 and T3 and add a list  
[T2, T3] at T1 node. After receiving T2 from P1, P2 executed T2 successfully. P2 also 
generated two new remote transactions T4 and T5 from T2. P2 now sends a vote 
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message to the initiator of T2 together with the list of transactions [T4, T5] that are 
generated from T2 at P2. When P1 receives the vote message, it creates two new 
nodes for T4 and T5 and inserts edges from T2 to T4 and from T2 to T5. P1 sends a 
forward message to P2. Note that P2 is waiting for the decision from the initiator of 
T2 in order to forward the transactions T4 and T5. Only after receiving the decision 
from the initiator, P2 forwards the transactions T4 and T5 to P4 and P5, respectively. 
P1 now waits for the execution decision of T4 and T5 from P4 and P5. Similarly, P3 
does the same task. Note that according to the links in Figure 2a, P4 receives the 
same global transaction from P2 and P3. We assume that P4 receives the transaction 
from P2 earlier than P3. Hence, no edge is created from T3 to T4 since P4 rejects T4 
from P3. 

3.1 Transaction execution protocol 

A transaction execution protocol starts when a peer receives a transaction from its clients. 
As we mentioned earlier that an initiator maintains a dynamically generated TDT for a 
global transaction it originates. Besides maintaining a tree, each initiator also maintains a 
transaction status tree (TST) for monitoring the execution status of the component 
transactions of a global transaction. Each node in a TST is labelled with a state that 
represents the status of a remote transaction in a peer. When a remote transaction, e.g., Ti 
is executed locally in a peer Pi, the corresponding node status is changed to LCi. When all 
the remote transactions generated from Ti are executed successfully by all the relevant 
acquaintees, then the status of Ti is changed to ACi. When the status of all the nodes is 
acquaintance-level committed then the initiator sends a terminate message to all the 
peers. After receiving the terminate message all the peers delete the stored information of 
the transaction. 

An example of a transaction execution protocol is depicted in Figure 3. In the figure, 
left side shows a peer-to-peer database network where a transaction T1 is originated at 
peer P1. In the following, the steps of the protocol are described. 

• Step 1: T1 is executed at P1. Hence, a node LC1 is created in TST(T1) for T1 showing 
that T1 is locally committed. 

• Step 2: P1 has forwarded T2 and T3, the remote transactions generated from T1, for 
peers P2 and P3. P1 marks T1 in TST(T1) to ALC1 and waits for the votes from P2 and 
P3. 

• Step 3: P1 receives votes from P2 and P3. The status of T1 is changed to AC1 since T1 
has been executed successfully in P1’s acquaintees. 

• Step 4: After receiving the vote message from P2, P1 knows that P2 has no 
transaction to forward, therefore, an edge from AC1 → AC2 is inserted. It represents 
that the component transaction T2 has been successfully committed at P2 and P2 has 
not generated any new remote transaction. On the other hand, when P1 receives the 
vote message from P3, P1 knows that P3 has generated new remote transactions T4 
and T5 to be forwarded to P4 and P5. Therefore, an edge AC1 → ALC3 is inserted. It 
represents that T3 is acquaintance-level-to-be-committed, that means P1 has to wait 
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for the execution decision from P4 and P5. P1 also sends a forward message to P3 
allowing P3 to forward the newly generated transactions. 

• Step 5: After receiving the forward message from P1, P3 forwards T4 and T5 to P4 and 
P5 respectively. P1 receives vote message from P4 and P5 about the successful 
execution of T4 and T5 generated from T3. Therefore, the status of T3 is changed from 
ALC3 to AC3. It denotes that component transactions of T3 have been successfully 
executed at the acquaintees of P3. 

• Step 6: When P1 receives vote messages from P4 and P5, P1 knows that there is no 
more component transactions generated from T4 and T5. Therefore, edges  
AC3 → AC4 and AC3 → AC5 are inserted. The edges denote that no further 
propagation has happened and all the remote transactions have been successfully 
executed in the network. 

• Step 7: When P1 notices that each node has the status AC, P1 sends a termination 
message to all the participants of T1. All the peers then terminate (T) the execution of 
T1 and do the garbage collection. 

Figure 3 Transaction execution protocol 

 

Figure 4 presents the protocol. From the protocol, we notice that the initiator maintains 
two data structures for a transaction Ti: a TDT (TDT(Ti)) and a TST (TST(Ti)). When a 
transaction Ti is originated at Pi, the transaction is first executed at Pi and Pi starts 
building TDT(Ti) and TST(Ti). After the local execution of Ti, Pi finds the list of 
acquaintees relevant to Ti using the function ACQ(Pi(Ti)). If there is no relevant peers for 
Ti, the execution of Ti is terminated at Pi. If there are relevant acquaintees for Ti then Ti is 
entered into the global execution phase. In the global execution phase, the initiator first 
updates TDT(Ti) and TST(Ti). Updating TDT(Ti) has the following steps: 

1 transforms Ti to Tj for all relevant acquaintees Pj in П. 

2 inserts an edge from Ti to each Tj 

3 propagates each Tj to the respective acquaintee. 
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Figure 4 Transaction execution protocol 

 

Meanwhile, updating TST(Ti) changes the status of a transaction based on the response 
received from the participants. In Section 3.1, we discussed how the status of a TST 
changes. When global execution phase starts, the initiator waits for responses from the 
participants. For each response, the initiator updates the TDT and TST. Updating TDT(Ti) 
also includes sending forward and terminate control messages. When a forward message 
is sent to a participant, the participant forwards the component transactions to its 
acquaintees generated from Ti. The initiator sends a terminate message when the status of 
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all the nodes of TDT(Ti) becomes acquaintance-level-committed. The termination 
condition is checked by the initiator through the checkterminate(Ti) function. Meanwhile, 
when a participant receives a transaction, it first executes the transaction locally then 
sends response message to the initiator. The response message includes: 

1 id of the peer 

2 id of the transaction 

3 list of component transactions it generates 

4 list of peers’ ids to those the peer is waiting to forward the transactions. 

When a participant receives a forward message, it then forwards the remote transactions. 
A peer terminates the execution of a transaction when it receives a terminate message. 

Note that, a transaction can involve in a conflict during different states of the 
transaction. In the next section, we describe the mechanism of dealing with conflicts. 

4 Candidate transaction selection protocol 

In this section, we propose a protocol that selects a candidate transaction from the 
conflicting transactions that will eventually be executed in the network. Selecting a 
candidate transaction is required when more than one transactions conflict with each 
other during their execution in the network and the transactions are generated from 
multiple peers. Consider a situation where a peer receives two updates generated from 
two peers that modify a tuple in the database. Without the execution knowledge of other 
peers, the peer is unable to make a decision which one to accept or reject. Due to the 
arbitrary topology of a peer-to-peer database network, a conflict between the same pair of 
updates may occur at different peers during their propagation. In order to keep the 
databases consistent, each peer must reach the same decision to execute the updates. 

We already mentioned that each peer maintains a CG for keeping the conflict 
relationship among transactions by implementing any existing conflict detection 
technique. According to the protocol, when a peer detects a conflict, the peer informs the 
conflict information to the initiators of the transactions and stops further execution and 
propagation of the transactions. For example, consider a situation where a peer Pk has 
executed a transaction T1 before a transaction T2 arrives. When T2 arrives at Pk and T2 
conflicts with T1, then Pk sends the conflict information to both the initiators of T1 and T2. 
Assume that T1 and T2 are originated at P1 and P2, respectively. Now, P1 and P2 detect a 
candidate transaction that will continue its execution. However, the victim transaction 
will be compensated. When a transaction is selected as a victim, the initiator of the victim 
transaction sends a compensate message to the participating peers of the victim 
transaction. After successful compensation, the peer which originated the victim 
transaction informs the originator of the candidate transaction. This decision enables the 
candidate transaction to continue its execution further in the network. In the proposed 
protocol, the initiators use a leader election algorithm to select the victim and the 
candidate transaction. Essentially, we adopt the concept of a universal leader election 
algorithm, called Mega-Merger (Santoro, 2006), to select the candidate transaction. 
Since, we consider the semantic conflict between transactions, therefore a single 
transaction must be executed in the network among the conflicting transactions. In the 
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following, we discuss the concept of the Mega-Merger leader election protocol and 
simultaneously, we show how this concept fits our protocol for selecting the candidate 
transaction. 

4.1 Concept of the Mega-Merger protocol 

Mega-Merger is an efficient protocol for a leader election and the main feature of this 
protocol is that it is topology independent. In this protocol, nodes are treated as small 
villages, and edges are roads with different names and distances. A group of villages has 
a city. Initially, a village is also treated as a city of its own village. The goal is to have all 
villages merge into one large megacity. A city, even a village always tries to merge with 
the closest neighbouring city. When a merge of two cities takes place there are several 
important issues are considered: 

1 the naming of the new city, the resolution of this depends on how far the involved 
cities have progressed in the merging process, i.e., on the level they have reached, 
and on whether the merge decision is shared by both cities 

2 the decision of which roads of the new city will be serviced by public transports. 

When a merge occurs, the roads of the new city serviced by public will be the roads of 
the two cities already serviced plus only the shortest road connecting them. In the 
following we describe the basic principles of the election algorithm and show how does it 
fit in our protocol. 

• A city is a rooted tree; the nodes are called districts, the root is also known as  
down-town. Similarly, in our protocol, when a global transaction is executed in the 
network, a TDT is constructed. The transaction when it is originated becomes the 
root of the tree and all the remote transactions generated in the network progressively 
can be treated as districts. 

• Each city has a level and a unique name; all districts eventually know the name and 
the level of their city. Similarly, in our framework, the initiator knows how many 
peers have executed the transactions successfully, since each participant sends a vote 
message to the initiator after the execution of a transaction. We can treat this count 
as a level of a global transaction. The level of a global transaction Ti is denoted by 
level(Ti). In Mega-Merger, all districts know the name of their city. Similarly, all the 
participants of a transaction know the initiator of the transaction. 

• Edges are roads, each with a distinct name and distance. In TDT, edges are 
acquaintance links through which a transaction has propagated. However, TDT does 
not need any name and distance concept for the edges. 

• Initially, each node is a city with just one district, itself, and no roads. All cities are 
initially at the same level, i.e., zero. Similarly, when a transaction is originated at a 
peer and is executed locally, it can be treated as a city with one district, i.e., the 
transaction itself. 

• A city merges with its closest neighbouring city to become a bigger city. To request 
the merging, a Let-us-Merge message is sent on the shortest road connecting it to the 
city. In the proposed protocol, there is no specific merge request from the originator 
of a transaction. The merging of two TDTs starts corresponding to two global 
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transactions when the transactions conflict in a peer during the construction of the 
TDTs. A merging situation occurs in an acquaintance link when a peer receives a 
transaction from an acquaintee through the acquaintance link and the received 
transaction conflicts with a transaction that is active in that peer. In this case, we can 
treat the edge as a merge link. 

• When a merge occurs, the roads of the new city serviced by public transport will be 
the roads of the two cities already serviced plus only the shortest road connecting 
them. In our protocol, when a transaction becomes a candidate then the merge 
process starts. In the merge process, first the peers that executed the victim 
transaction are considered for the execution of the candidate transaction. This results 
the merge of TDT of the victim transaction with the TDT of the candidate 
transaction. For merging, the candidate transaction starts its execution along the 
edges of TDT of the victim transaction. The propagation of the candidate transaction 
starts from the merge link. Before, the propagation starts, the initiator of the victim 
transaction first sends a compensate message to all the participants of the victim 
transaction in order to revert the execution effect of the victim transaction. 

4.2 Selection of a candidate transaction 

In this section we describe the process of selecting a candidate transaction from the 
conflicting transactions. A candidate is selected using two resolution protocols. The 
protocols are friendly resolution and absorption resolution. In the following, we discuss 
the protocols. 

Consider two transactions Ti and Tj originated by Pi and Pj, respectively. Also, 
assume that Ti and Tj are conflicting transactions. The TDTs are denoted by TDT(Ti) and 
TDT(Tj), and the levels of the trees are denoted by level(Ti) and level(Tj), respectively. 

• Friendly resolution (level(Ti) = level(Tj)): There are two cases in friendly resolution. 
a Case 1: A participant Pm of Ti forwards Ti to a participant Pq of Tj and Pq also 

forwards Tj to Pm. 
• Solution: When Pm and Pq identify a conflict, they inform both the initiators 

of Ti and Tj. After receiving the conflict information, Pi and Pj choose one 
of the transactions as a candidate transaction and the other becomes a victim 
transaction. Consider that Ti is selected as a candidate transaction. When Ti 
is selected as a candidate transaction, the edge Pm → Pq becomes the merge 
link. After selecting the candidate, merging of TDT(Tj) into TDT(Ti) starts. 
There are two phases of merging: 
1 compensation 
2 merging. 

During the merge process, the status of Tj changes to compensate and the 
compensation phase begins. During the compensation phase, no new transaction is 
allowed to execute by the peers those are involved in constructing TDT(Tj) and 
TDT(Ti) and the further propagation of the transactions Ti and Tj is stopped. In  
order to begin the compensation phase, Pj sends a compensation message to all the 
participants of Tj. Each participant now generates a compensate transaction jT −  and 

completes the compensation task. After compensation is done Pj informs the initiator 
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of Ti that the compensation is completed. Now the merging process starts. The 
merging process starts from the merge link. In the merging process, execution of the 
candidate transaction starts to the participants of the victim transaction from the 
merge link. Figure 5a illustrates the conflict scenario. Consider that Ti is select as a 
candidate transaction. Therefore, the merge link is Pm → PQ. The merge process is 
depicted in Figure 5b. The bold edges show the merging of TDT(Tj) with TDT(Ti) 
and the propagation of Ti in TDT(Tj). After merging process is finished, all the 
participants of Tj become participants of Ti. Now, the execution of Ti starts. After the 
merge process, the level(Ti) is set to the summation of the level(Ti) and level(Tj). 

Figure 5 Friendly resolution, (a) two TDTs have the same level considering that Ti and Tj are 
conflicting transactions (b) Ti is chosen as candidate and TDT(Tj) merged with TDT(Ti) 

  
(a)     (b) 

b Case 2: A participant Pm of Ti receives Tj from a participant Pq of Tj. 
• Solution: When Pm identifies the conflict, it informs both the initiators of Ti and 

Tj. Now, the same solution is applied as described in Case 1. 

• Absorption resolution (level(Ti) ≠ level(Tj)): 
a Case 1: A participant Pm of Ti forwards Ti to a participant Pq of Tj and Pq also 

forwards Tj to Pm. 
• Solution: When Pm and Pq identify a conflict, they inform both the initiators 

of Ti and Tj. If level(Ti) > level(Tj) then both Pi and Pj select Ti as a 
candidate transaction. Therefore, TDT(Tj) is absorbed by TDT(Ti) and 
merging from the link Pm → Pq starts. Otherwise, TDT(Tj) is absorbed by 
TDT(Ti) and merging from the link Pq → Pm starts. The merging process is 
the same as described in the friendly resolution. 

b Case 2: A participant Pm of Ti receives Tj from a participant Pq of Tj. 
• Solution: When Pm identifies the conflict, it informs both the initiators of Ti 

and Tj. Now, the same solution is applied as described in Case 1. 

In the discussion above, we only consider the situation when two transactions are 
conflicting. However, there are several critical situations may occur. For example, a 
transaction may involve in conflict with multiple transactions during the construction of 
TDT or the transaction may involve in conflict during merge process with another 
transaction. In the later case, the execution of the new transaction is suspended until 
previous resolution decision is made. For example, a transaction Tk conflicts with a 
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transaction Tj and Tj is in merge process with Ti. In this case the execution of Tk is 
suspended. After the merge process of Ti and Tj is finished, the conflict resolution 
between Tj and Tk is started. If Tj becomes the candidate then merge starts with Tj 
otherwise it will merge with Ti. 

The first case is little bit complex. For example, at peer Pn, Ti conflicts with Tj and Tk. 
If the conflict between Ti and Tj happens before the occurrence of a conflict between Ti 
and Tk, then the conflict between Ti and Tj is resolved. If the conflict happens 
simultaneously, then Pn informs both the conflict information to the initiator of Ti. The 
initiator of Ti decides which one should be resolved first by considering the levels of Tj 
and Tk. The other transaction is suspended. The situation becomes more critical when 
conflicts occur in two different peers participating in the construction of TDT(Ti). For 
example, at Pn, Ti conflicts with Tj and at Pm, Ti conflicts with Tk. Also in this case, the 
initiator of Ti decides which one should be resolved first by considering the levels of Tj 
and Tk. 

In the following, we show an example of the candidate transaction selection. 

Figure 6 Selection of a candidate transaction 

 

Consider Figure 6 where two peers P1 and P2 originated two conflicting transactions T1 
and T5 in the network. 

• Step 1: P1 has generated a component transactions 2
1T  from T1 for peer P2 and 

forwarded to P2. Meanwhile, P5 also generated two component transactions 2
5T  and 

3
5T  from T5 for peers P2 and P3 and forwarded to them. Assume that 2

5T  executed 

before 2
1T  at P2. Therefore, the conflict relation between T1 and T5 at P2 is 2 2

1 5 .T T→  

P3 also executed 3
5T  and waits for the forward message to forward T5 to P6. 

• Step 2: After detecting the conflict, P2 sends the conflict information to the initiators 
of T1 and T5, i.e., P1 and P5. 
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• Step 3: Initiators P1 and P5 decide the candidate transaction. In this case,  
level(T1) < level(T2). Therefore, absorption protocol is applied, hence both P1 and P5 
select T5 as a candidate transaction. 

• Step 4: P1 sends a compensate transaction 1T −  to P2. After the compensation phase, 
P1 informs P5 that the compensation of T1 is complete. P5 now sends a forward 
message to P2 and P3 to forward T5. 

• Step 5: After receiving the forward message P2 forwards T5 to P1 and P4. On the 
other hand, P3 forwards T5 to P6. 

• Step 6: Since, there is no new conflict and all the peers executed T5, termination of T5 
starts and terminated successfully. 

4.3 Discussion 

In the proposed protocol, it does not require any global knowledge of a network topology 
for processing transactions. However, it seems that an initiator can become a bottleneck 
of the system since all participating peers need to connect to it before taking the next step 
to process a transaction. It is also possible that too many requests are sent to the initiator 
in a very short period of time. Also, the protocol may have a high complexity when 
several peers update the data at the same time. These seem to be the limitations of the 
approach. 

However, we assume that in a peer-to-peer database network, the global level 
transactions are not frequent and inconsistency of data in peers can be tolerated for the 
time being since transactions are not OLAP transactions. A transaction is only forwarded 
to its acquaintees only to resolve inconsistencies between peers. Moreover, one can claim 
that the design actually centralised since an initiator always need the global knowledge. 
However, this is not the case since we do not assume any dedicated controller who 
always monitor the global execution of transactions. Only the peer who initiates a 
transaction becomes the coordinator of the transaction during the execution period of the 
transaction in the system. 

5 Evaluation 

In this section, we show different experimental evaluations of the proposed transaction 
processing mechanism. In order to evaluate the performance over relatively large P2P 
settings, we implemented a simulator as a single java-based application. In the simulator, 
all peers are run within the same Java Virtual Machine. Each peer is implemented as a 
distinct thread and implements a FIFO queue for message communication. The 
environment consisted of a single Windows XP machine with Intel Pentium 4 CPU  
3.40 GHz and 1 GB of RAM. Each peer is connected to a database that is instantiated as a 
MySQL 5.0 database. The experiments were evaluated with different size of networks, 
namely 100, 200, 300, 400, and 500. For each of the networks, the simulator generated 
schemata and contents of the peers’ databases, as well as the peers’ acquaintances. The 
operations of a transaction are MySQL select (read operation) and update (write 
operation) commands. Since all the peers ran on the same machine, there were no 
network delays. On the other hand, some delays were introduced because of database 
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access times. To detect a conflict between transactions, we only consider write-write 
conflicts between transactions. Note that a conflict is considered in tuple level. Therefore, 
when a transaction executes in a peer, the conflict detection module determines the 
conflict based on the key value of tuples accessed by two transactions. 

The first goal of the experiment is to compare the response time of a transaction in 
different types of networks, namely, in tree, chain, and arbitrary networks, which contain 
cycles, for evaluating the efficiency of the proposed protocol. The result of the evaluation 
is shown in Figure 7. The number of peers in the networks is 100. The size of the 
transaction is 5. The transaction size means the number of update operations in a 
transaction. We observe that the changes in response time of a transaction in different 
networks are not large. This is due the fact that each peer directly communicates with the 
initiator for processing a transaction. In a chain network, the response time is little higher, 
but compared to the time in other networks the change is not large. In a chain network, a 
transaction is executed along the chain of 100 peers. The initiator receives the final 
response lately from the last peer in the network. Overall, the response time deviates 
slightly in different types of networks, this proofs the efficiency of the protocol. 

Figure 7 Response time of a transaction in different types of network 

 

We also evaluate the response time of a transaction of the proposed protocol considering 
the different size of networks. The network size means number of peers in the network. 
For each network, the topology is arbitrary which may contain cycles. The result of the 
evaluation is depicted in Figure 8. We observe that response time increases linearly with 
the size of networks. This shows the scalability of the protocol. We are also concerned 
about the number of messages generated for executing a transaction in each network. The 
result is shown in Figure 9. We observe that number of messages increases linearly with 
the size of networks. 

Figure 8 Response time of a transaction in different size of networks 
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Figure 9 Number of messages in processing a transaction 

 

We also evaluated the transaction processing protocol considering a conflict situation 
among transactions. Mainly, we wanted to observe, how the conflict resolution protocol 
affects the execution time of transactions. For this experiment, the transactions are 
generated concurrently from ten peers in a 100 peers network. The size of each 
transaction is 5. The transactions are generated in such a way that they involve in a 
conflict in increasing number. In the first case, there is no conflict among the 
transactions. We call it conflict free. In the second case two transactions are involved in a 
conflict, in the third case three transactions, and so on. We consider maximum five 
transactions are involved in a conflict. The result of the experiment is shown in  
Figure 10. Our observation from the result is that the execution time increases with 
increase number of conflicts but the impact on execution time is not a major inhibiting 
factor. We see that the execution time grows gradually with the increased number of 
conflicts. This shows the efficiency of the conflict resolution protocol. 

Figure 10 Response time of transactions in conflict situations 

 

6 Related work 

In the following, we analyse some related works and show the differences with our 
model. 

Haller et al. (2005) proposed a concept of transaction processing in P2P environment 
relying on a decentralised serialisation graph. In this model, each peer and each 
transaction maintain a local serialisation graph. The serialisation graph of the peer 
reflects the dependencies of the transactions that invoked service calls on that peer 
whereas the serialisation graph of the transaction includes the dependencies in which the 



   

 

   

   
 

   

   

 

   

    Concurrent execution of transactions in a peer-to-peer database network 529    
 

    
 
 

   

   
 

   

   

 

   

       
 

transaction is involved. However, in our approach, peers are involved in resolving the 
conflict not the transactions themselves. This reduces the overhead of the transaction 
message. Moreover, in Haller et al. (2005), the peers that will be involved in processing a 
transaction is predetermined. Therefore, clients of a peer should have the global 
knowledge of the resources. However, in our framework, users are only aware of the 
local sources. Transactions are processed progressively in other peers in the network 
based on the mappings with the local peer where the transaction is submitted. 

Cetintemel et al. (2003) proposed a decentralised peer-to-peer transaction approach in 
a replicated system. The protocol uses the concept of voting. The protocol assumes that 
number of peers is fixed and each peer owns an equally distributed currency value. The 
total value of the currency in the network is 1.0. A transaction commits in the system 
when it is guaranteed that no conflicting transaction can obtain more votes. 

In our approach, the number of peers is unknown in the system; therefore no fixed 
currency can be applied in each peer. A candidate transaction is selected from the 
conflicting transactions using a leader election protocol. The transaction which becomes 
the leader finally executes in the network. Moreover, a transaction may not execute in all 
peers in the network. Therefore, we can not assume a fixed currency for each peer. A 
transaction acquires a level progressively during its execution. Based on the level a 
candidate transaction is selected. 

Taylor and Ives (2006) proposed a database reconciliation mechanism in a 
decentralised collaborative data sharing environment. Here conflicts are resolved using 
the priority of updates and the provenance information. The approach requires centralised 
provenance information for resolving conflicts. Otherwise, same update may be accepted 
by one peer and rejected by another peer. 

However, in our approach, initiators of the updates resolve a conflict using majority 
consensus policy. 

Terry et al. (1995) proposed a replicated database system to support collaboration 
among users in a weakly connected network. Transactions are broadcast between sites 
using an epidemic propagation protocol. It first executes transaction in their tentative 
order, then rolls back and replays them in final order. If the transaction is accepted by a 
primary site, the final timestamp is assigned to the update. Hence, the final execution of 
transactions relies on a primary site that enforces a global continuous order on a growing 
prefix of history. 

However, in our system there is no primary site. Every peer executes transactions and 
resolves conflicts independently. Also, in our system, updates are propagated along the 
mappings between peers. Using a primary site may as mentioned in Terry et al. (1995) 
constitutes a congestion point, and, anyway is not suitable in a peer-to-peer system. 

In Androutsellis-Theotokis et al. (2004), the authors presented a preliminary proposal 
for a peer-to-peer e-business transaction processing system. More specifically, the paper 
focuses on requirements analysis of different aspects of the collaboration and transaction 
procedure. However, it lacks precise semantics of transactions and does not describe the 
execution semantics of transactions. 

SchÄutt et al. (2008) presented a distributed key/value store based on the Chord 
structured overlay with symmetric data replication and a transaction layer implementing 
ACID properties. The protocol works very well for asynchronous collaborative 
applications where data are symmetric. In Mejas and van Ro (2010), the protocol has 
been extended to support eager locking, making it feasible to build synchronous 
collaborative applications. In both cases, locks are the only way to guarantee atomicity, 
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concurrency control and strong consistency. Unfortunately, locks are not the best 
abstraction for P2P systems, and it is highly desirable to avoid them whenever possible. 

Logoot (Weiss et al., 2009) is a scalable optimistic replication algorithm for 
collaborative editing on P2P Networks. Logoot ensures causality, consistency and 
intention preservation criteria. In Logoot, a single operation is considered. It mainly 
works with replicated system where multiple edit transactions may execute concurrently 
on the same data item. However, we consider a database transaction model which is 
consists of many data operations. Our approach works with a P2P data sharing 
environment where data is shared but not replicated. 

7 Concluding remarks 

In this paper, we present an approach for executing concurrent transactions in a  
peer-to-peer database network. Our approach is scalable because a participant does not 
need any global knowledge of the execution status of a transaction and there is no global 
coordinator. Transactions are processed by each peer independently. Only the initiators of 
the transactions are responsible for monitoring the global execution of the transactions. 
We also present a candidate transaction selection protocol from the conflicting 
transactions that run in the network concurrently. 

A future goal is to investigate the transaction processing considering the dynamic 
behaviour of peers. Further, we are interested to propose a recovery mechanism of 
transaction in a peer-to-peer database network. We also plan to investigate the efficiency 
of the protocol considering a large network by comparing with existing protocols. 
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